CHEMISTRY III

015

21/11/2019

8:30 AM - 10:00 AM

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2019

SUBJECT: CHEMISTRY

PAPER III: PRACTICAL

COMBINATIONS:

- BIOLOGY-CHEMISTRY-GEOGRAPHY (BCG)
- MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)
- PHYSICS-CHEMISTRY-BIOLOGY (PCB)
- PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION: 1 hour 30 minutes

INSTRUCTIONS:

- 1) Write your names and index number on the answer booklet as written on your registration form and **DO NOT** write your names and index number on additional answer sheets of paper if provided.
- Please read carefully before you start and make sure that you have all the apparatus and chemicals that you may need.
- 3) This paper consists of **one question**.
- 4) Answer the question in this paper and record your answers in the spaces provided.
- 5) Non-programmable scientific calculators may be used.
- 6) Use only a blue or black pen.

PRACTICAL: IODOMETRY TITRATION.

(Reaction of **thiosulphate ions** with **iodine** produced from the oxidation of **iodide ions** by **iodate ions** in HCl acid).

PROCEDURE:

- i) Pour 25 ml of FA1 which is a 0.06mole/litre solution of KI (potassium iodide) in a conical flask/beaker at room temperature (25°C) using a 50 ml measuring cylinder.
- ii) Add 10ml of a 0.2 mole/litre HCl (hydrochloric acid) solution to the KI solution in the conical flask/beaker to acidify it using the measuring cylinder.
- iii) Measure 25 ml of **FA2** which is a 0.01 mole/litre solution of KIO₃ (potassium iodate) using a pipette then add it to the acidified KI solution in the conical flask/beaker.
- iv) Fill the burette (fixed on the retort stand) with the solution of **FA3** which is Na₂S₂O_{3.xH₂O</sup> (hydrated sodium thiosulphate) using a beaker and a filter funnel.}
- v) Titrate (add)12 ml of Na₂S₂O_{3.x}H₂O solution in the resultant acidified red solution of KIO₃ and KI in the conical flask/beaker.
- vi) Then put 5 drops of starch solution in the red solution of KIO₃ and KI in the conical flask/beaker.
- vii) Continue the titration of Na₂S₂O₃.xH₂O until the blue-black colour of starch disappears (solution becomes colourless).
- viii) Record the volume of titrated (used) Na₂S₂O₃.xH₂O solution in the table of results on page 3.
- ix) Repeat the experiment procedures i) to viii) 3 times to get consistent results.

Experiment	1	2	3	4
Final volume of FA3 (Na ₂ S ₂ O ₃ .xH ₂ O) (ml)				
Initial volume of FA3 (Na ₂ S ₂ O ₃ .xH ₂ O) (ml)				
Volume of FA3 (Na ₂ S ₂ O ₃ .xH ₂ O) (ml)				

Equations of the reactions:

$$IO_{3^{-}(aq)} + 5I^{-}_{(aq)} + 6H^{+}_{(aq)} \rightarrow 3I_{2 (aq)} + 3 H_{2}O_{(l)}$$

$$3I_{2 \text{ (aq)}} + 6S_2O_3{}^{2\text{-}}\text{(aq)} \rightarrow 6I^{\text{-}}\text{(aq)} + 3S_4O_6{}^{2\text{-}}\text{(aq)}$$

Questions:

a) Calculate the average volume of Na₂S₂O_{3.x}H₂O used.

(2 marks)

b) Calculate the number of moles of IO_3 in 25 ml of the solution. (2 marks)

c) Determine the number of moles of I ₂ produced from the reaction	n. (2 marks)
d) Calculate the number of moles of S ₂ O ₃ ² - that reacted with the I (iodine) produced.	² (2 marks)
e) Calculate the molarity of $S_2O_3^{2-}$.	(2 marks)
Determine the value of x (number of moles of water of crystallization) in the formula if 12.4 g of Na ₂ S ₂ O _{3.xH₂O was dissolved to make 1 litre of solution.}	
Atomic mass: Na = 23, S=32, O=16, H=1)	(3marks)