Chemistry III

015

29/07/2021 08:30 AM - 10:00 AM

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2020-2021

SUBJECT: CHEMISTRY III

PRACTICAL EXAM

COMBINATIONS:

- BIOLOGY-CHEMISTRY-GEOGRAPHY (BCG)
- MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)
- PHYSICS-CHEMISTRY-BIOLOGY (PCB)
- PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION: 1 hour 30 minutes

				_
Marks:		-	/30	
	ĺ			

INSTRUCTIONS:

- 1) Write your name and index number on the answer booklet as written on your registration form, and **DO NOT** write your names and index number on additional answer sheets if provided.
- 2) Please read carefully before you start and make sure that you have all the apparatuses and chemicals that you may need.
- 3) This paper has one question.
- 4) Answer the question in this paper and record your answers in the spaces provided.
- 5) Non-programmable scientific calculators may be used.

BACK TITRATION: DETERMINATION OF PERCENTAGE PURITY OF Na₂SO₃ IMPURE SAMPLE

Titration of Na₂S₂O₃.5H₂O (0.1 mole/litre) against iodine (I₂) liberated by oxidation of iodide ions by $K_2Cr_2O_7 = 0.02$ mole/litre.

PROCEDURE:

- (i) Pour 100 ml of H₂SO₄ (1 mole/litre) solution in a beaker.
- (ii) Add 100 ml of K₂Cr₂O₇, (0.02 mole/litre) to the H₂SO₄ acid solution in the beaker.
- (iii) Add **0.3 g of** Na₂SO₃ **crystals** to the above 200 ml solution mixture of K₂Cr₂O₇ (0.02 mole/litre) and H₂SO₄ (1 mole/litre) then stir gently.
- (iv) Label this 200 ml solution mixture of K₂Cr₂O₇ (0.02 mole/litre) and H₂SO₄ (1 mole/litre) solution containing 0.3 g of Na₂SO₃ crystals as **P**
- (v) Measure 50 ml of solution **P** using a measuring cylinder and pour it in an empty conical flask or beaker then add in it 25 ml of KI (0.2 mole/litre) solution.
 - Call (label) this solution as Q.
- (vi) Fill the burette with Na₂S₂O₃. 5H₂O (0.1 mole/litre) solution.
- (vii) Titrate the $Na_2S_2O_3$. $5H_2O$ (0.1 mole/litre) into the red solution (Q) until the solution turns orange.
- (viii) Add some drops (about a half dropper full) of starch solution in the orange **Q** solution of iodine in the conical flask to obtain a blue-black solution.
 - (ix) Continue the titration of $Na_2S_2O_3$. $5H_2O$ (0.1 mole/litre) in the blueblack iodine solution **Q** above until the black colour discharges (disappears).
 - (x) Record the volume of $Na_2S_2O_3$. $5H_2O$ used to reach equivalent point with **Q** in the table of results.
 - (xi) Repeat the experiment **procedures v) to xi) 2 times** to get consistent results.

TABLE OF RESULTS (9 marks)

Experiment	1		2	3	
Initial volume of FA3 (Na ₂ S ₂ O _{3.xH₂O) (ml)}		1			
Final volume of FA3 (Na ₂ S ₂ O _{3.xH₂O) (ml)}					
Volume of FA3 (Na ₂ S ₂ O ₃ .xH ₂ O) used(ml)					

Equations of the reactions:

$$\begin{split} & \text{Cr}_2\text{O}_7\text{2-$_{(aq)}$} + 3 \text{ SO}_3\text{2-} + 8\text{H}^+ \rightarrow 2 \text{ Cr}_2^*(\text{SO}_4)_{3(aq)} + 4\text{H}_2\text{O}_{(l)} \\ & \text{Cr}_2\text{O}_7\text{2-$_{(aq)}$} + 6\text{I}_{-(aq)} + 14\text{H}^+_{(aq)} \rightarrow 3\text{I}_2_{(aq)} + 7 \text{ H}_2\text{O}_{(l)} + 2 \text{ Cr}^{3+}_{(aq)} \\ & \text{I}_2_{(aq)} + 2\text{S}_2\text{O}_3\text{2-$_{(aq)}$} \rightarrow 2\text{I}_{-(aq)} + \text{S}_4\text{O}_6\text{2-$_{(aq)}$} \end{split}$$

Questions:

a) Calculate the average volume of S₂O₃²- used in this titration. (2 marks)

b) Calculate the number of moles of $S_2O_3^{2-}$ used in the titrated volume. (2 marks)

c) Calculate the number of moles of Iodine (I_2) that reacted with $S_2O_3^{2-}$ during titration. (2 marks)

d) Determine the number of moles of Cr ₂ O ₇ ² - that reacted to	produce the
iodine (I2) in 50 ml of solution Q.	(2 marks)
e) Determine the number of moles of $Cr_2O_7^{2-}$ in the 200 ml of	f solution P. (2 marks)
f) Calculate the number of moles of $Cr_2O_7^{2-}$ (0.02 mole/litre)	
ml of solution before adding neither 100ml H ₂ SO ₄ (1 mole	/litre) nor
0.3 g of Na ₂ SO ₃ to it.	(2 marks)
g) Calculate the number of moles of $Cr_2O_7^{2-}$ (0.02 mole/litre) reacted with Na_2SO_3 in the 0.3 g impure sample to obtain	solution P. (2 marks)
h) Determine the number of moles of Na ₂ SO ₃ in 0.3 g impur	e sample. (2 marks)
i) Calculate the mass of Na ₂ SO ₃ in the 0.3 g of impure Na ₂ S	SO ₃ (2 marks)
j) Calculate the percentage composition of Na ₂ SO ₃ in the 0. sample.	3g impure (3 marks)