Physics III

031

28/07/2021 08:30 AM - 10:00 AM

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2020-2021

SUBJECT: PHYSICS III
PRACTICAL EXAM

COMBINATIONS:

- PHYSICS -CHEMISTRY- MATHEMATICS (PCM)
- PHYSICS -CHEMISTRY- BIOLOGY (PCB)
- MATHEMATICS- PHYSICS-GEOGRAPHY (MPG)
- MATHEMATICS-PHYSICS- COMPUTER SCIENCE (MPC)

DURATION: 1 HOUR 30 MINUTES

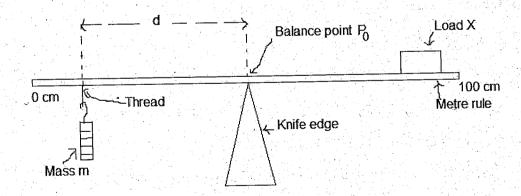
INSTRUCTIONS:

- 1. Write your names and index number on the answer booklet as written on your registration form and **DO NOT** write your names and index number on additional answer sheets if provided.
- 2. Do not open this question paper until you are told to do so.
- 3. This paper consists of one compulsory question. (40 marks)
- 4. You may use non-programmable calculator and mathematical set where appropriate.
- 5. All answers should be written in the answer booklet provided.
- 6. Use a blue or black pen and pencil for drawings.

ATTEMPT ALL SUB-QUESTIONS OF THIS QUESTION (40 marks)

In this experiment, you are required to determine the mass of a load labelled x using a balancing method.

Apparatus required:


- 1 wooden metre rule
- 1 set of slotted masses of 200 g each set (it comprises 9 slotted masses of 20 g each and a 20 g mass hanger)
- 1 sharp wooden knife edge
- 1 load labelled x
- 1 piece of thread 30 cm long

Procedures

- a) Balance the metre rule on the knife edge.
- b) Read and record the balance point Po in cm to one decimal place.

(1mark)

- c) Place the load labelled x on the metre rule so that its centre is exactly over 90.0 cm mark. It is not moved during the experiment
- d) Put a mass m=80.0 g on the metre rule. Its position is adjusted so that the metre rule is being balanced with the balance point P_0 . This point is exactly over the wooden knife edge (pivot) as shown below on the diagram drawn not to scale. Measure and record the distance d

e) Repeat the procedure d) for values of m=100.0, 120.0, 140.0, 160.0 and 180.0 g

Questions

- 1) Record your results in a suitable table including values of \mathbf{m} to one decimal place, \mathbf{d} to one decimal place and $\frac{1}{d}$ to two decimal places

 This means that for each value of d in cm, you calculate $\frac{1}{d}$. (15 marks)
- 2) Plot a graph of m(y- axis) against $\frac{1}{d}$ (x-axis). (8 marks)
- 3) Determine the gradient/slope G of the best fit straight line.

 Show clearly how you obtain the necessary information. (4 marks)
- 4) Find the mass M of the load x using the equation $M = \frac{G}{k}$ where k= 40.0 cm. (2 marks)
- 5) Do you think that the result obtained is accurate?

 Justify your answer. (2 marks)
- 6) a) Formulate another method different from the method used in this experiment that you would use to determine the mass of the load x. (2 marks)
 - b) Which one is the best? Explain. (2 marks)
- 7) Observe your graph and explain how it indicates that the readings are or not subjected to
 - a) A systematic error.

(2 marks)

b) A random error.

(2 marks)

BLANK PAGE

NESA 2020-2021 031 - Page 4 of 4