029

26/07/2022

8:30 AM-11:30 AM

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2021-2022

SUBJECT: MATHEMATICS II

COMBINATIONS:

- MATHEMATICS-CHEMISTRY-BIOLOGY (MCB)
- MATHEMATICS -COMPUTER SCIENCE-ECONOMICS (MCE)
- MATHEMATICS-ECONOMICS-GEOGRAPHY (MEG)
- MATHEMATICS -PHYSICS-COMPUTER SCIENCE (MPC)
- MATHEMATICS-PHYSICS-GEOGRAPHY (MPG)
- PHYSICS-CHEMISTRY-MATHEMATICS (PCM)

DURATION: 3 HOURS

INSTRUCTIONS:

- Write your names and index number on the answer booklet as written on your registration form, and **DO NOT** write your names and index number on additional answer sheets if provided.
- 2) Do not open this question paper until you are told to do so.
- 3) This paper consists of two sections: A and B.
 Section A: Attempt ALL questions. (55 marks)
 Section B: Attempt any THREE questions. (45 marks)
- 4) Geometrical instruments and silent non-programmable calculators may be used.
- 5) Use only a **blue** or **black** pen.

SECTION A: ATTEMPT ALL QUESTIONS (55 marks)

1)	Evaluate the	$\lim_{x \to 1} \frac{x^{20} - 1}{x^{10} - 1}$	(3 marks)
----	--------------	--	-----------

- 2) Solve the equation $x xe^{5x+2} = 0$ (4 marks)
- 3) Find the complex roots of the quadratic equation

$$z^2 - (4-i)z + (5-5i) = 0$$
 (4 marks)

4) Solve the following trigonometric equation in the range given

$$2\sin y + 5\cos y = 2\cos y, 0 \le y < 360^{\circ}$$
 (4 marks)

5) Prove that
$$\sqrt{\frac{1-\cos t}{1+\cos t}} = \frac{1-\cos t}{\sin t}$$
 (3 marks)

- 6) Find the equation of any horizontal tangent to $y = 2x^3 24x + 4$ (3 marks)
- 7) A bank advertises an interest rate of 8% per year. If you deposit 5000F, how much is on your account 3 years later if the interest is compounded continuously? Assume that the interest compounded continuously is modeled by $P = P_0 e^{rt}$ where P_0 is the initial amount deposit on account; *r* is the interest rate; *t* time for which the amount deposited can take in the bank.

(3 marks)

8) Using De Moivre 's theorem, show that $\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta$

(5 marks)

- 9) It is estimated that 50% of emails are spam emails. Some software has applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a non-spam email? (4 marks)
- 10) Find the polar equation of the circle of radius 3 units and center at (3,0).

```
(4 marks)
```

```
(1 mark)
```

b) Determine whether vectors \vec{i} and \vec{j} are or not linearly dependent such that $\vec{i} = (3,4)$ and $\vec{j} = (1,3)$. (3 marks)

11) a) Explain linear dependent vectors.

the equation $\frac{dy}{dx} + \frac{4y}{x} = 6x - 5, x > 0$ 12) Given Determine the solution of the above differential equation subjected to the boundary condition y = 1 at x = 1(4 marks)

13) Given that
$$\frac{1}{n} \sum_{r=1}^{n} x_r = 2$$
 and $\sqrt{\frac{1}{n} \sum_{r=1}^{n} (x_r)^2 - \frac{1}{n^2} \left(\sum_{r=1}^{n} x_r\right)^2} = 3$
Determine in term of *n* the value of $\sum_{r=1}^{n} (x_r + 1)^2$ (4 marks)
14) Evaluate integral $\int_{0}^{5} x e^{-x} dx$ (3 marks)

15) Determine angle between vectors \vec{u} and \vec{v} such that $\vec{u} = (3,4)$ and $\vec{v} = (-1,4)$. (3 marks)

SECTION B ATTEMPT ANY THREE QUESTIONS (45 marks)

- 16)
 - a) Given matrices A; B and C such that $A = \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix}$; $B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $C = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ If AB = C; find the matrix A^2 (7 marks)
 - b) Find an equation of a hyperbola whose foci are (4,2) and (8,2) and eccentricity is 2. (8 marks)

17) The marks of three students in Biology and Chemistry are:

Biology (x)	5	9	13	17	21
Chemistry (y)	12	20	25	33	35

- a) Find \bar{x}
- b) Find \overline{y}
- c) Calculate the covariance cov(x, y) of the marks distribution in these 2 subjects. (4 marks)
- d) Determine standard deviations σ_x and σ_y . (4 marks)
- e) Find the coefficient of correlation between x and y. (3 marks)

(2 marks)

(2 marks)

(3 marks)

- 18) A population of bacteria initially has 250 present and in 5 days there will be 1600 bacteria present.
 - a) Determine the exponential growth equation for this population.

(6 marks)

- b) How long will it take for the population to grow from its initial population of 250 to a population of 2000? (5 marks)
- c) Find an equation of the sphere whose center is C(3,8,1) and passes through the point (4,3,-1). (4 marks)

a) Express
$$\frac{5}{(x-1)(3x+2)}$$
 in partial functions. (4 marks)

b) Hence find
$$\int \frac{5}{(x-1)(3x+2)} dx$$
, where $x > 1$ (4 marks)

c) Find the particular solution of the differential equation:

$$(x-1)(3x+2)\frac{dy}{dx} = 5y, x > 1, \text{ for which } y = 8 \text{ at } x = 2.$$

Give your answer in the form $y = f(x)$ (7 marks)

20) It has been determined that the probability density function for the wait in line at a counter is given by the function:

$$f(t) = \begin{cases} 0, t < 0\\ 0.1e^{\frac{-t}{10}}, t \ge 0 \end{cases}$$

where t is the number of minutes spent waiting in line.

a) Verify whether the function f(t) is a probability density function.

(5 marks)

- b) Determine the probability that a person will wait in line for at least 6 minutes. (5 marks)
- c) Determine the mean wait in line. (5 marks)

-END-